2x^2/(1-x)(1-x)=46

Simple and best practice solution for 2x^2/(1-x)(1-x)=46 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2/(1-x)(1-x)=46 equation:



2x^2/(1-x)(1-x)=46
We move all terms to the left:
2x^2/(1-x)(1-x)-(46)=0
Domain of the equation: (1-x)(1-x)!=0
We move all terms containing x to the left, all other terms to the right
-x)(1-x!=-1
x∈R
We add all the numbers together, and all the variables
2x^2/(-1x+1)(-1x+1)-46=0
We multiply parentheses ..
2x^2/(+x^2-1x-1x+1)-46=0
We multiply all the terms by the denominator
2x^2-46*(+x^2-1x-1x+1)=0
We multiply parentheses
2x^2-46x^2+46x+46x-46=0
We add all the numbers together, and all the variables
-44x^2+92x-46=0
a = -44; b = 92; c = -46;
Δ = b2-4ac
Δ = 922-4·(-44)·(-46)
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(92)-4\sqrt{23}}{2*-44}=\frac{-92-4\sqrt{23}}{-88} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(92)+4\sqrt{23}}{2*-44}=\frac{-92+4\sqrt{23}}{-88} $

See similar equations:

| 7x-15+3=9 | | 11(w+1)=11 | | 3/4=18/d | | 2(10^-x/5)=20 | | 7(s-10)=10(8) | | 9(m+2)=-6(m17) | | 38=2-2x | | 9y+6y-2+10-3y=0 | | -7+6r=83 | | (3/5x1/7)x1=3/5x | | 150=75+15^x | | 3g−-1=13 | | 9(m+2)=-6(m17 | | x+9/8=1/4+x-7/3 | | 14-13=-4+8x | | (-12)=3(k-2) | | 9n-31-6n=32 | | t/7-7=-5 | | 7n+6n-5=14n+4 | | 168=7-^2x7 | | 72+4y=42 | | 2n+16-5n=11 | | x-2x-15-4=0 | | 17.05=2s+4.15 | | k/8+6=(-3) | | 3*(y-15)+(y*y)=80 | | 7=2-k/2 | | 14x+44-25x=219 | | h3− 1= 1 | | c-4/5=2 | | z/5-4=6 | | -5=-g/2 |

Equations solver categories